Navigation Image Map
A typical Thermistor Element

Temperature Controller Home Page 

Thermistor Definition
Temperature Controller: What is a Temperature Controller? Temperature controllers are instruments used to control temperature. The temperature controller takes an input from a temperature sensor and has an output that is connected to a control element such as a heater or fan.
CN7500 Series
1/32 DIN Ramp/Soak Controllers
CN7500 Series
• Dual 4-Digit LED Display
• 8 Ramp/Soak Programs, 8 Segments Each
• Universal Inputs, Autotune
• Dual Control Outputs
• RS485 Communications Standard
More Info »

Temperature Controller Product Links
Buy Temperature Controllers
• Temperature Controller Product Finder
• Benchtop and Wallmount Temperature Controllers
• Multi-loop Temperature Controllers
• Safety Limit Temperature Controllers
• Temperature Switches
• 1/32 and 1/16 DIN Autotune Temperature
• 1/8 DIN Autotune Controllers
• Autotune Controllers with Programmable Multicolored Display
• Safety Limit Controllers
• Multi-loop Controllers
• SCR's, SSR's, Contactors and Power Controllers
• Meter and Controller Accessories
• Temperature Switches and Low Cost Controllers
See All Temperature Controllers
Temperature Controller Tech Links
• Introduction to Temperature Controllers and Selection Considerations (PDF file)
• Temperature Control: Tuning a PID Controller (PDF file)
• Controller Operation (PDF file)
• Fuzzy Logic
• SSR Thermal Considerations(PDF file)
• Solid State Relays (PDF file)
• Frequently Asked Temperature Questions (PDF file)
• Introduction to Temperature Measurement
• Temperature Measurement and Control Glossary
• Practical Guidelines for Temperature Measurement
• Temperature Conversion Chart Between C and F
• Temperature Conversion Chart Between C and F
All Temperature Controller Technical Links
CN77000 Temperature Controller
The Miniature CN77000 is a full featured microprocessor-based temperature controller in a 1/16 DIN package.

Sign up for the e-mail newsletter!
Click here for help finding your product!
Introduction to Temperature Control
How does a Temperature Controller work?
To accurately control process temperature without extensive operator involvement, a temperature control system relies upon a controller, which accepts a temperature sensor such as a thermocouple or RTD as input. It compares the actual temperature to the desired control temperature, or setpoint, and provides an output to a control element. The controller is one part of the entire control system, and the whole system should be analyzed in selecting the proper controller. The following items should be considered when selecting a controller:
  1. Type of input sensor (thermocouple, RTD) and temperature range
  2. Type of output required (electromechanical relay, SSR, analog output)
  3. Control algorithm needed (on/off, proportional, PID)
  4. Number and type of outputs (heat, cool, alarm, limit)
What Are the Different Types of Controllers, and How Do They Work?
There are three basic types of controllers: on-off, proportional and PID. Depending upon the system to be controlled, the operator will be able to use one type or another to control the process.

On/Off Control
An on-off controller is the simplest form of temperature control device. The output from the device is either on or off, with no middle state. An on-off controller will switch the output only when the temperature crosses the setpoint. For heating control, the output is on when the temperature is below the setpoint, and off above setpoint. Since the temperature crosses the setpoint to change the output state, the process temperature will be cycling continually, going from below setpoint to above, and back below. In cases where this cycling occurs rapidly, and to prevent damage to contactors and valves, an on-off differential, or “hysteresis,” is added to the controller operations. This differential requires that the temperature exceed setpoint by a certain amount before the output will turn off or on again. On-off differential prevents the output from “chattering” or making fast, continual switches if the cycling above and below the setpoint occurs very rapidly. On-off control is usually used where a precise control is not necessary, in systems which cannot handle having the energy turned on and off frequently, where the mass of the system is so great that temperatures change extremely slowly, or for a temperature alarm. One special type of on-off control used for alarm is a limit controller. This controller uses a latching relay, which must be manually reset, and is used to shut down a process when a certain temperature is reached.

Proportional Control
Proportional controls are designed to eliminate the cycling associated with on-off control. A proportional controller decreases the average power supplied to the heater as the temperature approaches setpoint. This has the effect of slowing down the heater so that it will not overshoot the setpoint, but will approach the setpoint and maintain a stable temperature. This proportioning action can be accomplished by turning the output on and off for short time intervals. This "time proportioning" varies the ratio of “on” time to "off" time to control the temperature. The proportioning action occurs within a “proportional band” around the setpoint temperature. Outside this band, the controller functions as an on-off unit, with the output either fully on (below the band) or fully off (above the band). However, within the band, the output is turned on and off in the ratio of the measurement difference from the setpoint. At the setpoint (the midpoint of the proportional band), the output on:off ratio is 1:1; that is, the on-time and off-time are equal. if the temperature is further from the setpoint, the on- and off-times vary in proportion to the temperature difference. If the temperature is below setpoint, the output will be on longer; if the temperature is too high, the output will be off longer.

PID Control
Another controller type provides proportional with integral and derivative control, or PID. This controller combines proportional control with two additional adjustments, which helps the unit automatically compensate for changes in the system. These adjustments, integral and derivative, are expressed in time-based units; they are also referred to by their reciprocals, RESET and RATE, respectively. The proportional, integral and derivative terms must be individually adjusted or “tuned” to a particular system using trial and error. It provides the most accurate and stable control of the three controller types, and is best used in systems which have a relatively small mass, those which react quickly to changes in the energy added to the process. It is recommended in systems where the load changes often and the controller is expected to compensate automatically due to frequent changes in setpoint, the amount of energy available, or the mass to be controlled.
OMEGA offers a number of controllers that automatically tune themselves. These are known as autotune controllers.

Typical Sizes
Since temperature controllers are generally mounted inside an instrument panel, the panel must be cut to accommodate the temperature controller. In order to provide interchangeability between temperature controllers, most temperature controllers are designed to standard DIN sizes. The most common DIN sizes are shown below.
Standard DIN Cutouts for Temperature Controllers
 Temperature Controller Types
CN1A Series On-Off Controllers On-Off Controllers
On-Off controllers are the simplest type of controllers featuring on-off control action.

CNI8C Autotune PID Controllers Autotune PID Controllers
PID controllers provide very tight control but the PID algorithm requires tuning. Autotune controllers provide that function.
CN1507 Multiloop Temperature Controller Multiloop Controllers
Each control loop normally consists of one input and at least one output. OMEGA offers numerous multiloop controllers which can handle more than a single control loop. OMEGA's CN1507 can handle up to 7 control loops.
CN3101 Safety Controller Safety Limit Controllers
A safety limit controller is an off-off controller with a latching output. When the output changes state it requires a manual reset to change it back. Safety limit controllers are typically used as redundant controllers, to shut down a process when undesirable limits are reached.
TSW Temperature Switch Temperature Switches
An adjustable temperature switch is suited for applications which require an economical solution to temperature control. Temperature switches are typically less complicated and easier to set up than more sophisticated electronic controls.
Automation | Accelerometers | Calibrators | Cartridge Heaters | Chart Recorders | Cryogenics | Custom Pressure Transducers | Data Loggers | Data Acquisition | Dial Thermometers | Fiber Optics | Flexible Heaters | Flowmeters | Glass Bulb Thermometers | Grippers | Heaters | Humidity Measurement | Immersion Heaters | Infrared Thermometers | Level Measurement | Load Cells | Magnetic Flow Meters | Panel Meters | Pressure Gauges | Pressure Transducers | Rotameters | RTD| Signal Conditioners | Stepper Motors | Strain Gages | Strip Heaters | Temperature Controllers | Temperature Labels | Temperature Measurement | Temperature Sensor Manufacturing | Temperature Transmitters | Thermistors | Thermocouple | Thermocouple Wire | Thermowell | Ultrasonic Flow Meters
Home Page Order by part number Free Literature Search About OMEGA Engineering